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ABSTRACT
Through this article, we investigate certain properties of an additive version of the log-inverse
Weibull distribution including expressions for the cumulative distribution function, reliabil-
ity function, hazard rate function, quantile function, raw moments, incomplete moments etc.
Some structural properties of the distribution are considered along with the distribution and
moments of its order statistics. The maximum likelihood estimation of its parameters and
the elements of the Fisher information matrix are obtained. Further, the effciency of the dis-
tribution as a distributional model is illustrated using two real life datasets. Moreover, the
asymptotic behaviour of the maximum likelihood estimators are examined with the help of
simulated datasets.
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1. Introduction

The inverse Weibull distribution (IWD), introduced by [12] through the cumulative distribu-
tion function (c.d. f .)

Q1(x) = exp(−x−c), (1)

for any x > 0 and c > 0 and its related versions have been frequently used for modelling
survival datasets in the areas of medicine, reliability, ecology, industry etc. Various modifica-
tions of the IWD and their applications have been investigated in literature by several authors
like [6], [20], [13], [14], [10], [5], [23], [4], [8], and [16]. The additive Weibull distribution
(AWD(ρ, σ;α, β)) having the c.d.f.

Q2(x) = 1 − exp
[
−(ρxα + σxβ)

]
, (2)

for any x ∈ ℜ+ = (0,∞) with scale parameters ρ > 0, σ > 0 and location prameters
α > 0, β > 0 (such that α , β) was proposed by [26] by combining the survival func-
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tions of two Weibull distributions. The distribution was later studied in detail by [19]. More-
over, truncated versions of various distributions, including the Normal distribution, Weibull
distribution, Lindley distribution etc. have found wide applications in various areas of sur-
vival analysis and reliability theory. For example see [3], [2], [27], [24], [15],etc. Recently,
a log-transformed version of the IWD having the name “the log-inverse Weibull distribu-
tion (LIWD)” along with its location-scale extended form, “the extended log-inverse Weibull
distribution (ELIWD)”, capable for modelling truncated datasets were investigated by [17]
through their c.d.f.s

Q3(x) =exp
{
− [ln(x)]−c} (3)

and

Q4(y) =exp
{
−b−1 [ln(x) − a]−c

}
, (4)

respectively for x ≥ 0 and y ≥ ea with a ∈ (−∞,∞), b > 0 and c > 0 respectively.
Through this paper, we consider an additive form of the ELIWD using the name “addi-

tive log-inverse Weibull distribution (ALIWD)” by combining the survival functions of two
2-parametric versions of the ELIWD, thereby increasing the flexibility of the model in han-
dling survival data sets arising from a variety of fields including medicine, finance, geology,
demography and engineering sciences. We try to establish that the ALIWD possesses more
variability in terms of measures of central tendencies as well as skewness and kurtosis and
has a number of shapes for its hazard rate function.

The paper is organized as follows: The definition of the ALIWD along with some of its
important properties are presented in Section 2. In Section 3, we discuss some structural
properties of the distribution while Section 4 presents the distribution and moments of its
order statistics. Section 5 deals with the maximum likelihood (ML) estimation of the param-
eters of the ALIWD along with the derivation of its Fisher information matrix. In section 6
certain applications of the distribution to real life datasets are presented and the asymptotic
behaviour of the ALIWD is examined with the help of simulated datasets in Section 7.

2. Definition and Properties of the Additive Log-Inverse Weibull Distribution

The definition and some important properties of the additive log-inverse Weibull distribution
are provided in this section.

Definition 2.1. A continuous random variable U is said to follow the additive log-inverse
Weibull distribution with parameters ρ > 0, σ > 0, α > 0 and β > 0 if its c.d.f. FU(u) is of the
following form, for u > 1.

FU(u) = exp
{
−

{
ρ[ln(u)]−α + σ[ln(u)]−β

}}
(5)

A distribution with c.d.f. (5) is henceforth represented as the ALIWD(ρ, σ, α, β) having
shape parameters α, β and scale parameters ρ, σ. In order to ensure the identifiability of the
ALIWD(ρ, σ, α, β), we assume α , β whenever necessary. Clearly, depending on whether
ρ = 0 or σ = 0, the ALIWD(ρ, σ, α, β) reduces to the ELIWD(0, σ−c−1

, β) or ELIWD(0,
ρ−c−1

, α) respectively.
The expressions for the probability density function (p.d.f.), survival function, hazard rate

function and the reverse hazard rate function of the ALIWD are obtained through the follow-
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ing theorem, the proof of which follows directly from (5).

Theorem 2.2. We obtain the p.d.f. fU(u), the survival function FU(u), the hazard rate function
hU(u) and the reverse hazard rate function, τU(u) of the ALIWD(ρ, σ, α, β) as given below
for u > 1.

fU(u) = u−1
(
αρ(ln(u))−α−1 + βσ(ln(u))−β−1

)
exp

[
−

{
ρ[ln(u)]−α + σ[ln(u)]−β

}]
, (6)

FU(u) = 1 − exp
[
−

{
ρ[ln(u)]−α + σ[ln(u)]−β

}]
, (7)

hU(u) = u−1
(
αρ(ln(u))−α−1 + βσ(ln(u))−β−1

)
exp

[
−

{
ρ[ln(u)]−α + σ[ln(u)]−β

}]
×

{
1 − exp

[
−

{
ρ[ln(u)]−α + σ[ln(u)]−β

}]}−1
(8)

and
τU(u) = u−1

(
αρ(ln(u))−α−1 + βσ(ln(u))−β−1

)
. (9)

The behaviour of the p.d.f., fU(u) when u −→ 1 and when u −→ ∞ can be summarised as

lim
u→1

fU(u) =


∞, 0 < α < β < 1
0, α < 1, β > 1
0, 1 < α < β < ∞

, (10)

and
lim
u→∞

fU(u) = 0 (11)

respectively for all values of ρ and σ.
Also, on differentiating (6) and (8) with respect to u, we have

f
′

U(u) = fU(u)u−1
{
ψ1(u; θ) − ψ2(u; θ)

[
ψ1(u; θ)

]−1
− 1

}
(12)

and

h
′

U(u) = hU(u)u−1
[
ψ1(u; θ)

[
1 − exp−ψ(u; θ)

]−1
− ψ2(u; θ)

[
ψ1(u; θ)

]−1
− 1

]
, (13)

in which ψ(u; θ) =
{
ρ[ln(u)]−α + σ[ln(u)]−β

}
, ψ1(u; θ) =

(
αρ(ln(u))−α−1 + βσ(ln(u))−β−1

)
and

ψ2(u; θ) =
(
α(α − 1)ρ(ln(u))−α−2 + β(β − 1)σ(ln(u))−β−2

)
. Based on (12) and (13), we have

the following remarks.

Remark 1. From (12), it can be observed that fU(u) is a non-decreasing (or non-increasing)
function of u if ψ2(u; θ) is greater than (or less than) ψ1(u; θ)

{
[ψ1(u; θ)] − 1

}
.

Remark 2. On simplifying (13), it can be observed that hU(u) is a non-increasing (or non-
decreasing) function of u if [ψ1(u; θ)]2

{
ψ1(u; θ) + ψ2(u; θ)

}−1
is less than (or greater than)

1 − exp [ψ(u; θ)].

Remark 3. The modes of the ALIWD(ρ, σ, α, β) are the solutions of the equation f
′

U(u) = 0,
which reduces to

ψ2(u; θ)
{
ψ1(u; θ)

}−1
= ψ1(u; θ) − 1. (14)

There may be more than one roots for (14). The root of (14) corresponds to a local max-
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Figure 1. Plots of the c.d.f. and p.d.f. of the ALIWD(ρ, σ, α, β) for particular values of its parameters.

(a) Plots of c.d.f. for various values of α and β and ρ =0.25, σ = 1.25.

(b) Plots of p.d.f. for various values of α and β and ρ =0.25, σ = 1.25.

imum, a local minimum or a point of inflexion depending on whether
d2 ln fU(u)

du2 < 0,

d2 ln fU(u)
du2 > 0 and

d2 ln fU(u)
du2 = 0, in which

d2 ln fU(u)
du2 =

u−2

ψ1(u; θ)

{(
ψ2(u; θ) + ψ1(u; θ)

) (
1 − ψ1(u; θ)

)
− ψ2(u; θ)−2ψ1(u; θ)−1 + ψ3(u; θ)

}
,

with ψ3(u; θ) =
(
α(α + 1)(α + 2)ρ(ln(u))−α−3 + β(β + 1)(β + 2)σ(ln(u))−β−3

)
.

We have presented the plots of the c.d.f. and the p.d.f. of the ALIWD(ρ, σ, α, β) for
choices of its parameters in Figure (1) and those of its hazard rate function in Figure (2)
From the plots, we can observe the following aspects with regards to the characteristics of the
distribution.

• The point of intersection of the cdf os the ALIWD(ρ, σ, α, β) is
(2.718282, exp

[
−(ρ + σ)

]
), which indicates that there is a probability of

[1 − exp
[
−(ρ + σ)

]
] that an ALIWD(ρ, σ, α, β) distributed life time is at least

2.7182, for any values of the parameters α and β.
• The p.d.f. of the ALIWD(ρ, σ, α, β) is a non-increasing function of u for extremely

small values of its parameters α and β. As the values of α and β increase, the distribution
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Figure 2. Plots of the hazard rate function of the ALIWD(ρ, σ, α, β) for particular values of its parameters.

(a) Plots of hU (u) for various values of α and β when ρ =0.25, σ = 1.25.

(b) Plots of hU (u) for extremely small values of α and β when ρ =0.25,
σ = 1.25.

(c) Plots of hU (u) for very large values of ρ or σ and small values of α
and β.
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becomes uni-modal and the distribution tends to be more symmetric.
• It can be observed that the hazard rate function of the ALIWD(ρ, σ, α, β) takes different

shapes based on the values α and β. When both α and β are extremely small, hU(u) is
a decreasing function of u and it is a non-decreasing function of U for extremely large
values of α and β. For all other values of the parameters, the hazard rate function has
the upside-down bathtub shape.

Quantile Function:
The quantile function of the ALIWD(ρ, σ, α, β) is obtained by inverting FU(u) =
exp

[
−

{
ρ[ln(u)]−α + σ[ln(u)]−β

}]
= p, where p ∈ (0, 1). We arrive at the non-linear equation

ρ[ln(u)]−α + σ[ln(u)]−β = − ln(p). (15)

By using the substitution t = [ln(u)]−1, we have

ρtα + σtβ = − ln(p) = y. (16)

Expanding the term tα using the Taylor series expansion, we have

tα =
∞∑

k=0

(α)k

k!
(t − 1)k =

∞∑
j=0
ν1 jt j, in which ν1 j =

∞∑
k= j

(−1)k− j

k!

(
k
j

)
α[k], (α)k is the descending

factorial and (α)k denotes the ascending factorial.

Expanding tβ in similar terms with ν2 j =
∞∑

k= j

(−1)k− j

k!

(
k
j

)
(β)k and substituting in (16), we have

y = S (t) =
∞∑
j=0

ν jt j, (17)

where ν j = ρν1 j + σν2 j.
Using the Lagrange theorem under the assumption that the power series expansion holds, we
have
y = S (t) = ν0 +

∞∑
j=1
ν jt j, where ν1 = S ′(t) , 0 and S (t) is analytic at a zero point. Then, the

inverse power series expansion, t = S −1(y) exists and is given by

t = S −1(y) =
∞∑
j=1
ϑ jy j, in which ϑ j =

1
n!

{
d j−1

dt j−1 [Ψ(t)] j

}
t=0

, Ψ(t) =
1

S (t) − ν0
.

Now the quantile function can be written as

Q(p) = exp

 ∞∑
j=1

ϑ j[− ln(p)] j

−1

. (18)

Using the expansion, [− ln(1 − (1 − p))] j = j!
∞∑

n= j

(−1) j+n

n!
S (n, j)(1 − p)n, where S (n, j) is the

Stirling numbers of the first kind for n = 1, 2, . . ., j = 0, 1, . . . , n and satisfying the recurrence
relation S (n + 1, j) = S (n, j − 1) − nS (n, j) in (18), we have the quantile function as

Q(p) = exp

 ∞∑
j=1

q j(1 − p) j

−1

, (19)
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Figure 3. Plots of the mode and the median of the ALIWD(ρ, σ, α, β) for particular values of its parameters.

(a) Plots of the mode of the ALIWD(1, 1, 0.5, β) for varying values of
α and particular values of β.

(b) Plots of the median of the ALIWD(1, 1, 0.5, β) for varying values
of α and particular values of β

where q j =
1
n!

n∑
j=1
ϑ j j!(−1) j+nS (n, j), for n = 1, 2, . . . .

Clearly, the median of the ALIWD(ρ, σ, α, β) is obtained by using the substitution p = 0.5
in (15). We have plotted the median and mode of the ALIWD(ρ, σ, α, β) for varying values
of its parameters and presented them in Figure (3). Moreover, for comparison purposes,
the median and the mode of the ALIWD(ρ, σ, α, β) is plotted along with those of the
AWD(ρ, σ, α, β) for fixed arbitrary values of α and β in Figure (4). From both the figures, it
can be observed that the median of the ALIWD(ρ, σ, α, β) is a non-increasing function while
that of the AWD(ρ, σ, α, β) is a non-decreasing function of α for fixed values of β. Also, the
modes of the ALIWD(ρ, σ, α, β) show greater flexibility for varying values of α and fixed
arbitrary values of β.

Raw moments:
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Figure 4. Plots of the mode and median of the ALIWD(ρ, σ, α, β) and the AWD(ρ, σ, α, β) for particular values of their
parameters.

(a) Plots of the mode of the ALIWD(1, 1, α, 0.5) and the
AWD(1, 1, α, 0.5) for particular values of its parameters.

(b) Plots of the median of the ALIWD(1, 1, α, 0.5) and
AWD(1, 1, α, 0.5) for particular values of its parameters.
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By definition, the rth raw moment µ
′

r of the ALIWD(ρ, σ, α, β) is

µ
′

r = E(Ur) =

∞∫
1

uru−1
(
αρ(ln(u))−α−1 + βσ(ln(u))−β−1

)
(20)

exp
[
−

{
ρ[ln(u)]−α + σ[ln(u)]−β

}]
du. (21)

Using the substitution y = [ln(u)]−1 in (20),

µ
′

r =

∞∫
0

exp
[
ry−1

] (
αρyα−1 + βσyβ−1

)
exp

[
−

(
ρyα + σyβ

)]
dy (22)

=

∞∑
k=0

rk

k!

∞∫
0

y−k
(
αρyα−1 + βσyβ−1

)
exp

[
−

(
ρyα + σyβ

)]
dy.

Substituting yα = t, we have

µ
′

r = α
−1
∞∑

k=0

rk

k!

∞∫
0

t−kα−1 (
αρt(α−1)α−1

+ βσt(β−1)α−1)
exp

[
−

(
ρt + σtβα

−1)]
dt

= α−1
∞∑

k=0

rk

k!

{
αρJ(−kα−1;ρ,σ,βα−1) + βσα

−1J((β−k)α−1−1; ρ, σ, βα−1)
}
, (23)

in which

J(s; a, b, c) =

∞∫
0

us exp−(au + buc)du. (24)

As illustrated by [19], (24) can be evaluated in different ways depending on the values of c,
in order to find explicit expressions for µ

′

r.

When c =
β

α
, where β ≥ 1, α ≥ 1 and α , β are relatively prime natural numbers and when

0 < c < 1 (i.e. β < α) and c > 1 (i.e. β > α), we use Eq. (2.3.2.13) of Vol.1 of [21]( p 321).
When β < α we have

J(s;a,b,c) =

α−1∑
m=0

(−b)mΓ(s + 1 + mβα−1)

m!a(s+1+mβα−1)

× (β+1)Fα

(
1,∆(β, s + 1 + mβα−1);∆(α, 1 + m);

(−1)αββbα

ααaβ

)
, (25)

for s + 1 +
mβ
α

> 0 in which the generalised hypergeometric function
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dFb(p1, p2, ...pβ; q1, q2, ...qα; u) and ∆(p, q) are defined as

βFα(p1, p2, ...pβ; q1, q2, ...qα; x) =
∞∑

k=0

(p1)k(p2)k...(pβ)k xk

(q1)k(q2)k...(qα)kk!
(26)

and
∆(p, q) = (q/p, (q + 1)/p, ..., (q + p − 1)/p). (27)

When β > α and (s + 1 + m)α > 0 we have

J(s;a,b,c) =

β−1∑
m=0

(−1)mαΓ((s + 1 + m)αβ−1)

βm!b((s+1+m)αβ−1)

× (α+1)Fβ

(
1,∆(α, (s + 1 + m)αβ−1;∆(β, 1 + m);

(−1)βααaβ

ββbα

)
. (28)

For irrational c, an approximation of vanishingly small error can be made in (25) and (28),
using increasingly rational approximation for this parameter. When β ≥ 1 and α ≥ 1 are
co-prime natural numbers we can evaluate (24) using the Meijer Gm,n

d,b function as defined
below.

Gm,n
β,α

(
z

∣∣∣∣∣∣ p1, . . . , pβ
q1, . . . , qα

)
=

1
2πi

∫
L

∏m
j=1 Γ(q j + t)

∏n
j=1 Γ(1 − p j − t)∏β

j=n+1 Γ(p j + t)
∏α

j=m+1 Γ(1 − q j − t)
z−1dt, (29)

where i =
√
−1 and L represents an integration path as in [9]. Also,

exp (−bxβ/α) = G1,0
0,1

(
bxβ/α

∣∣∣∣∣∣ −0
)
. (30)

Then,

J(s;a,b,c) =
βs+1/2

(2π)((α+β)/2−1)as+1 Gα,β
β,α

 bαββ

aβαα

∣∣∣∣∣∣∣∣
−s
β
,

(−s + 1)
β

, . . . ,
(−s + β − 1)

β
0

 . (31)

As a special case, when α = 1, according to Eq.(9.31.2) in [9],

Gm,n
β,α

(
z−1

∣∣∣∣∣∣ pr
qs

)
= Gn,m

α,β

(
z

∣∣∣∣∣∣ 1 − qs
1 − pr

)
. (32)

In the light of (24) caqn be written as

J(s;a,b,c) =
βs+1/2

(2π)((β−1)/2)as+1 Gβ,1
1,β

 aβ

bββ

∣∣∣∣∣∣∣∣
1

(s + 1)
β

,
(s + 2)
β

, . . . ,
(s + β)
β

 . (33)

Generally, for any positive real numbers α and β such that c > 1 and
s + m + 1

c
> 0, by
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expanding exp(−au) in (24), we have

J(s;a,b,c) =

∞∑
m=0

(−a)m

m!

∞∫
0

us+m exp
[
−(buc)

]
du

=

∞∑
m=0

(−1)m

c m!

( a
b1/c

)m 1
b(s+1)/cΓ

(
s + m + 1

c

)
. (34)

Following [25], the Wright generalised hypergeometric function can be defined as

dΨb

[
(p1, P1), . . . , (pd, Pd)
(q1,Q1), . . . , (qd,Qb) ; z

]
=

∞∑
n=0

∏d
j=1 Γ(p j + P jn)∏b
j=1 Γ(q j + Q jn)

zn

n!
, (35)

for 1 +
∞∑

n=0
Q j −

∞∑
n=0

P j > 0. Using (35) in (34) we obtain

J(s;a,b,c) =
1

c b(s+1)/c 1Ψ0

[(
s + 1

c
,

1
c

)
;
−a
b1/c

]
. (36)

The numerical values of these special functions can be computed using statistical softwares
like MAPLE or MATHEMATICA for particular values of its parameters.
Using equations (25), (28), (31), (33) or (36) in (23) depending on the values of α and β gives
the rth raw moment of the ALIWD(ρ, σ, α, β) for various values of its parameters.

Incomplete Moments:
For r¿=i and y¿1, the rth incomplete moment ∆r(y) can be obtained ase obtain an expression
for the rth incomplete moment of the ALIWD(ρ, σ, α, β) random variable U through the
definition,

∆r(y) = E(Ur/U ≤ y) =

y∫
1

ur fU(u))du (37)

=

∞∑
j=0

r j

j!

[ln(y)]−1∫
0

t− j
(
αρtα−1 + βσtβ−1

)
exp

{
−

(
ρtα + σtβ

)}
dt, (38)

using the substitution t = [ln(u)]−1 and expanding the exponential term exp[rt−1]. Substituting
tα = z in (38), we have

∆r(y) =
∞∑
j=0

r j

α j!

ln(y)−α∫
1

z(1− j)α−1−1
(
αρz(α−1)α−1

+ βσz(β−1)α−1)
× exp

{
−

(
ρz + σzβα

−1)}
dz.
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On expanding the term exp
[
−ρz

]
, we obtain

∆r(y) =
∞∑

j,k=0

r j(−1)kρk

j!k![
ρI(ln(y)−α,k− jα−1,σ,βα−1) + σβα

−1I(ln(y)−α,(β− j)α−1+ j−1,σ,βα−1)
]
, (39)

in which I(y; s, σ, βα−1) =

y∫
0

usexp
[
−σuβα

−1
]
du. When α ≥ 1, β ≥ 1 are natural co-prime num-

bers, we have

I(y; s, σ, βα−1) =

y∫
0

usG1,0
0,1

(
σuβα

−1

∣∣∣∣∣∣ −0
)

du, (40)

for appropriate values of the parameters in the light of (30). Making use of Eq. (2.24.2.2) in
Prudnikov et al.(1986, p 348), I(y;s,σ,βα−1) can be expressed as

I(y;s,σ,βα−1) =
αyβ(s+1)

β(2π)((α−1)/2) Gα,β
β,β+α

σ
αyβ

αα

∣∣∣∣∣∣∣∣∣∣
−s
β
,

1 − s
β

, . . . ,
β − s − 1

β
,−

0,
−s − 1
β

,
s
β
, . . . ,

β − s − 2
β

 . (41)

By using (40) and (41) in (39), we obtain the expression for the rth incomplete moments of
the ALIWD(ρ, σ, α, β) for various values of its parameters.

Remark 4. Using ∆r(t), the mean deviations about the mean µ1 and the median M of the
ALIWD(ρ, σ, α, β) can be obtained as,

E(|U − µ1|) = 2µ1F(µ1) − 2∆1(µ1) (42)
and

E(|U − M|) = µ1 − 2∆1(M) (43)

respectively, where ∆1(.) is as given in (2), for r = 1.

3. Some structural properties

In this section we present certain results highlighting some structural properties of the
ALIWD. The proofs of Theorems 7, 8 and 9 are omitted as they can be obtained directly
by using the method of transformation of variables.

Theorem 3.1. A random variable U has the ALIWD(ρ, σ, α, β) if and only if Y1 = [ln(U)]−1

has the AWD(ρ, σ, α, β).

Theorem 3.2. A random variable U has the ALIWD(ρ, σ, α, β) if and only if Y2 = ln[U]
follows the Inverse Weibull Multiplicative Model (IWMM) of [11] having c.d.f.

Q5(y) = exp
{
−

[
ρy−a + σy−b

]}
, (44)
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in which a = ρα
−1

and b = σβ
−1

.

Theorem 3.3. A random variable U has the ALIWD(ρ, σ, α, β) if and only if Y3 = Uc has
the ALIWD(ρ∗, σ∗, α, β) with ρ∗ = ρcα, σ∗ = σcβ, for c > 0.

Theorem 3.4. For extremely small values of the random variable U, the ALIWD(ρ, σ, α, β)
tends to the IWMM having c.d.f. (44) with a = ρα

−1
and b = σβ

−1
.

Proof: When u = 1 + t, for extremely small values of t > 0, the c.d.f. FU(u) of the
ALIWD(ρ, σ, α, β) given in (5) can be written as

FU(u) = exp
{
−

(
ρ[ln(1 + t)]−α + σ[ln(1 + t)]−β

)}
. (45)

On expanding ln(1 + t) in (45) and discarding terms with higher powers of t, we obtain the
following representation of F(t), which is the c.d.f. of the IWMM as given in (44).

F(t) = exp
[
−

(
ρt−α + σt−β

)]
■

Theorem 3.5. If U be any continuous random variable with c.d.f. F(u), for every u ∈ (1,∞),
then E {h(U)/U ≤ y} = h(y) + d, for h(U) =

{
ρ[ln(U)]−α + σ[ln(U)]−β

}
and d = 1 if and only

if U has the ALIWD(ρ, σ, α, β).

Proof: The proof follows from Theorem 9 of [22] (pp. 264) since E(h(U)) = 1, lim
u↓1

h(u) = ∞

and lim
u→∞

h(u) = 0, so that

F(u) = exp
[
1
d

[h(∞) − h(u)]
]

= exp
[
−

(
ρ[ln(u)]−α + σ[ln(u)]−β

)]
, (46)

for u ∈ (1,∞), which is the c.d.f. of the ALIWD(ρ, σ, α, β). ■

4. Order statistics: Distribution and Moments

Let Ui:n be the ith order statistic based on a random sample U1, U2. . . , Un of size n from the
ALIWD(ρ, σ, α, β) having p.d.f. fU(u) = fU(u; θ) for θ = (ρ, σ, α, β), as given in (6), c.d.f.
FU(u) as given in (5) and rth raw moment µ

′

r = µr(θ). This section provides expressions for
the distribution and moments of Ui:n through the following theorems when U > 1.

Theorem 4.1. The p.d.f. of Ui:n is given by

fi:n(u) =
i−1∑
j=0

νn:i: j fU(u; θ∗), (47)

in which νn:i: j =
i
(

n
i

)(
n−i

j

)
(−1)n−i− j

(n − j)
, and θ∗ = ((n − j)ρ, (n − j)σ, α, β).
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Proof: By definition, the p.d.f. of Ui:n can be written as

fi:n(u) =
n!

(i − 1)! (n − i)!
[FU(u)]i−1 [1 − FU(u)]n−i fU(u),

=

i−1∑
j=0

n!
(i − 1)! (n − i)!

(
n − i

j

)
(−1)n−i− j

exp
{
−(n − j − 1)

(
ρ[ln(u)]α + σ[ln(u)]β

)}
fU(u), (48)

by using the binomial theorem. Now (48) gives (47) in the light of (6). ■
The following corollaries and Theorem (4.5) follow directly from Theorem (4.1).

Corollary 4.2. The p.d.f. of the smallest order statistic U1:n = min(U1, U2, . . ., Un) is ob-
tained as

f1:n(u) =
n−1∑
j=0

(
n
j

)
(−1) j fU(u; θ∗1), (49)

in which θ∗1 = (( j + 1)ρ, ( j + 1)σ, α, β), where fU(.) is as given in (6) and u > 1,.

Corollary 4.3. For u > 1, the p.d.f. of the largest order statistic Un:n = max(U1, U2, . . ., Un)
is

fn:n(u) = fU(u; θ∗2), (50)

in which θ∗2 = (nρ, nσ, α, β), where fU(.) is as given in (6).

Corollary 4.4. For u > 1, the p.d.f. of the median Um+1:n, with n = 2m + 1, is the following
for fU(.) as given in (6).

f(m+1:n)(u) =
m∑

j=0

(−1) j(2m + 1)
(

2m
m

)(
m
j

)
m + k + 1

fU(u; θ∗3), (51)

in which fU(u; θ∗3) = fU((m + j − 1)ρ, (m + j − 1)σ, α, β).

Theorem 4.5. The rth raw moment of Ui:n is given by

µr(i:n)(u) =
i−1∑
j=0

νn:i: j µr(θ∗), (52)

where νn:i: j and θ∗ are as defined in (47).

5. Maximum Likelihood Estimation

The ML estimation of the parameters of the ALIWD(ρ, σ, α, β) is discussed in this sec-
tion. Let U1, U2, . . . , Un be a random sample taken from a population following the
ALIWD(ρ, σ, α, β). For the vector of parameters θ = (ρ, σ, α, β), the log-likelihood func-
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tion is given by

ℓ(θ) =
n∑

i=1

{
ln(u−1

i ) + ln
(
αρ[ln(ui)]−α−1 + βσ[ln(ui)]−β−1

)
−

(
ρ[ln(ui)]−α + σ[ln(ui)]−β

)}
. (53)

On differentiating the log-likelihood function (53) with respect to the parameters ρ, σ, α and
β respectively and equating to zero, we obtain the following likelihood equations in which
φi = [ln(ui)]−α, vi = [ln(ui)]−β, wi = αρφi + βσvi and u∗i = ln(ui).

n∑
i=1

[
φi

(
α

wi
− 1

)]
= 0, (54)

n∑
i=1

[
vi

(
β

wi
− 1

)]
= 0, (55)

n∑
i=1

{
ρ φi

[
1 − α ln(u∗i )

wi
+ ln(u∗i )

]}
= 0 (56)

and
n∑

i=1

{
σ vi

[
1 − β ln(u∗i )

wi
+ ln(u∗i )

]}
= 0. (57)

The observed Fisher information matrix is derived as

Iθ = ((Ii j)), (58)

where the elements of Iθ are as given below, for i, j= 1, 2, . . . , n.

I11 =
d2ℓ(θ)

dρ2 = −

n∑
i=1

α2φ2
i

w2
i

, (59)

I12 =
d2ℓ(θ)
dρdσ

= −

n∑
i=1

αβφivi

w2
i

, (60)

I13 =
d2ℓ(θ)
dρdα

=

n∑
i=1

φi


[
1 − α ln(u∗i )

]
wi

[
1 −

ραφi

wi

]
− ln(u∗i )

 , (61)

I14 =
d2ℓ(θ)
dρdβ

= −

n∑
i=1

ασφivi

[
1 − β ln(u∗i )

]
w2

i

, (62)
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I22 =
d2ℓ(θ)
dσ2 = −

n∑
i=1

β2v2
i

w2
i

, (63)

I23 =
d2ℓ(θ)
dσdα

= −

n∑
i=1

βρφivi

(
1 − α ln(u∗i )

)
w2

i

, (64)

I24 =
d2ℓ(θ)
dσdβ

=

n∑
i=1

vi


(
1 − β ln(u∗i )

)
wi

[
1 −

σβvi

wi

]
− ln(u∗i )

 , (65)

I33 =
d2ℓ(θ)
dα2 =

n∑
i=1

ρyi

 ln(u∗i )
[
α ln(u∗i ) − 2

]
wi

+
ρφi

[
1 − α ln(u∗i )

]2

w2
i

− [ln(u∗i )]2

 , (66)

I34 =
d2ℓ(θ)
dαdβ

= −

n∑
i=1

ρσφivi[1 − α ln(u∗i )][1 − β ln(u∗i )]

w2
i

(67)

and

I44 =
d2ℓ(θ)

dβ2 =

n∑
i=1

σvi

 ln(u∗i )
[
β ln(ui) − 2

]
wi

+
σvi

[
1 − β ln(u∗i )

]2

w2
i

− [ln(u∗i )]2

 . (68)

6. Applications

In this section the utility of the ALIWD(ρ, σ, α, β) is demonstrated with the help of the
following two datasets.
Data Set 1:The data pertains to the survival of 40 patients suffering from Leukemia, obtained
from the Ministry of Health Hospitals in Saudi Arabia ([1]).
115, 181, 255, 418, 441, 461, 516, 739, 743, 789, 807, 865, 924, 983, 1024,
1062, 1063, 1165, 1191, 1222, 1222, 1251, 1277, 1290, 1357, 1369, 1408,
1455, 1478, 1549, 1578, 1578, 1599, 1603, 1605, 1696, 1735, 1799, 1815, 1852.
Data Set 2: Data on remission times for a group of leukaemia patients given the drug 6-MP
from [18].
6, 7, 10, 13, 16, 22, 23
The values of the K-S statistics corresponding to the ALIWD(ρ, σ, α, β) for the two datasets
along with the corresponding critical values at 1% level are provided in Table (1).

Table 1. K-S statistics for the ALIWD(ρ, σ, α, β) corresponding to Data Set 1 and 2.

K-S Statistic Data Set 1 Data Set 2
Calculated Value 0.2325 0.1569
Critical Value 0.2521 0.5758

We have obtained the ML estimates of the parameters of the ALIWD(ρ, σ, α, β) by using
R software in the case of the above two datasets and the same is presented in Table (2) along
with the values of the corresponding standard errors and p-values.
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Table 2. Fitted values of the parameters of ALIWD(ρ, σ, α, β) corresponding to Data Set 1 and Data Set 2.

Data Set 1
Parameter Estimate Std Error t-Value p-value
ρ 51755 0.28 × 10−08 Inf < 2.2 × 10−16

σ 51735 0.62 × 10−05 Inf < 2.2 × 10−16

α 6.1706 0.4536 13.604 < 2.2 × 10−16

β 6.1710 0.4532 13.616 < 2.2 × 10−16

Data Set 2
Parameter Estimate Std Error t-Value p-value
α 5.1335 0.6924 7.4134 < 2.2 × 10−16

β 14.3584 2.1 × 10−06 inf < 2.2 × 10−16

ρ 60.2710 23.1330 2.6054 0.00917
σ 0.5284 8.4 × 10−07 Inf < 2.2 × 10−16

The variance-covariance matrices corresponding to Data Set 1 and 2 respectively are

Σ1 =


0.20575
−0.18975 0.20539
0.00000 0.00000 0.0000
0.00000 0.00000 −17.59219 0.00000

 (69)

and

Σ2 =


0.47951
0.0000 0.0000

11.02883 0.0000 535.13812
0.0000 281.4750 0.0000 0.0000

 (70)

For comparison, we have fitted the following distributions along with the ALIWD: the log
generalized inverse Weibull distribution (LGIWD) of [5], the IWD, the Weibull distribution
(WD), the LIWD, the reduced log generalised inverse Weibull distribution (RLGIWD) of
[5] as well as a left truncated version of the IWD truncated at 1, called as the ’left trun-
cated inverse Weibull distribution (LTIWD)’. The distributions are compared using certain
information criteria like ‘the Akaike information criteria (AIC)’, ‘the Bayesian information
criteria (BIC)’, ‘the corrected Akaike information criteria (AICc)’ and ‘the consistent Akaike
information criteria (CAIC)’ and the numerical results obtained for the Datasets 1 and 2 are
summarised in Table (3) and Table (4) respectively. We have obtained cumulative probability
plots in Figures (5) and (7) and WPPs corresponding to the fitted models are presented in
Figures (6) and (8) respectively for graphical comparison. From these tables and figures, it
can be observed that the ALIWD(ρ, σ, α, β) gives relatively better fit to the Datasets 1 and 2
as compared to the other models.

Table 3.: Fitting various distributions to Data Set 1

Model Estimates Log-
Likelihood

AIC BIC AICc CAIC

ALIWD ρ = 51755 -322.794 653.589 660.344 654.732 664.344
σ = 51735
α = 6.1706
β = 6.191

LGIWD µ = 2300.5860 -350.173 706.3460 711.4120 707.3460 714.412
σ = 2877.8820 -394.603 791.207 792.3502 791.962 793.962

Continued · · ·
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Model Estimates Log-
Likelihood

AIC BIC AICc CAIC

γ = 0.6558
IWD c = 0.1960
WD α = 0.116 -407.99 823.981 825.124 830.736 834.736
LIWD c = 0.701 -419.868 841.736 843.424 841.841 844.424
LTIWD c = 0.196 -376.710 755.430 757.470 755.500 758.470
RLGIWD γ = 3200.597 -43587.230 87176.460 87176.565 87178.150 87179.150

Table 4.: Fitting various distributions to Data Set 2

Model Estimates Log-
Likelihood

AIC BIC AICc CAIC

ALIWD ρ = 60.2710 -23.180 54.360 54.150 74.360 58.150
σ = 0.5280
α = 5.1330
β = 14.3580

LTIWD c = 0.53448 -30.077 62.154 62.100 62.954 63.100
LIWD c = 1.4871 -32.451 66.902 66.848 67.702 67.848
IWD α = 0.53448 -33.287 68.575 68.521 69.375 69.521
WD α = 0.31126 -35.784 73.569 73.515 74.369 74.515
RLGIWD γ = 2018.90 -50.669 103.339 103.285 104.139 104.285
LGIWD µ = 1161.244 -56.400 118.801 118.639 126.801 121.639

σ = 0.8649
γ = 182.0800

7. Simulation

In order to examine the asymptotic behaviour of the MLEs of the parameters of the
ALIWD(ρ, σ, α, β), we carry out a simulation study by generating AWD(ρ, σ, α, β) obser-
vations (Y) with the help of MATHEMATICA and transforming them to the corresponding
ALIWD(ρ, σ, α, β) observations (U) using the transformation U = exp(Y−1). Observations
were generated for the following two sets of parameters (1) ρ = 1, σ = 1, α = 0.001, β = 0.1
and (2) ρ = 1.5, σ = 1.2, α = 8, β = 0.8 corresponding to the upside-down bathtub shape
and decreasing hazard rate shape as seen in Figure (2). According to [7], a maximum of
200 bootstrap samples are required to obtain a good estimate of the variance of an estimator.
Hence we have considered 200 bootstrap samples of sizes 50, 500 and 1000 for comparing
the performances of the different MLEs mainly with respect to their mean values and MSEs.
The average bias of the estimates and average MS Es over 200 replications are calculated for
different cases and presented in Table (5). From Table (5), it can be observed that as sample
size increases the bias decreases while the MS Es of the estimators are in decreasing order.
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Figure 5. Cumulative probability plots of various distributions corresponding to the Data Set 1.
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Figure 6. Weibull Probability Plots of various distributions corresponding to Data Set 1.
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Figure 7. Cumulative probability plots of various distributions corresponding to Data Set 2.

Figure 8. Weibull Probability Plots of various distributions corresponding to Data Set 2.

(a)
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Table 5. Average bias and mean squared errors (within parenthesis) of the MLEs of the parameters of the ALIWD(ρ, σ, α, β)
based on simulated datasets corresponding to parameter sets (1) ρ = 0.25, σ = 1.25, α = 0.001, β = 0.1 and (2) ρ = 1.5, σ = 1.2,
α = 8, β = 0.8.

Parameter set Sample Size ρ σ α β
Set 1 50 0.5315 0.5428 0.3312 0.3415

(0.00015 ) (0.00023 ) (0.05648 ) (0.05692 )
500 0.2892 0.2699 0.1824 0.1588

(0.00011 ) (0.00015) (0.02158) (0.03114)
1000 0.000112 0.000871 0.00001 - 0.00001

(0.000001 ) (0.000001 ) (0.000011 ) (0.000045)
Set 2 50 0.0288 0.02198 0.3928 0.3997

(0.005490) (0.006884) (0.002588) (0.005124)
500 0.00115 0.000968 0.12587 0.11281

(0.00012) (0.00124) (0.00091) (0.00044)
1000 0.00012 -0.00001 0.00536 0.00052

(0.000082) (0.000012) (0.000011) (0.000005)
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